var模型的matlab代码,摘自:https://sites.google.com/site/jnakajimaweb/var

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
%%--------------------------------------------------------%%
%% Estimation of standard VAR models %%
%%--------------------------------------------------------%%
%% coded by Jouchi Nakajima %%
%%--------------------------------------------------------%%
%% Last update: 2018/07/31 %%
%% http://sites.google.com/site/jnakajimaweb/ %%
%%--------------------------------------------------------%%
%% You may use and modify this code at your own risk %%
%%--------------------------------------------------------%%

%% OLS estimation of standard (time-invariant parameter)
%% VAR models with Cholesky-type identification to
%% produce impulse response and historical decomposition

clear all
close all

%% ------------------- load data ------------------------ %%

% specify file and sheet
mdata = xlsread('test.xlsx', 'SampleData');

% specify variable names
asvar = {'Inf', 'X', 'r', 'Q'};

%% ------------------- set options ---------------------- %%

%%%% model and series settings

vind = [1 2 3 4]; % select column index of data
% vind = [4 2 1 3]; % (eg: different ordering)
% vind = [3 2 1]; % (eg: sub-sets of data)

flc = 1; % constant term (1:yes, 0:no)

nl = 1; % # of lags

%%%% impulse response

vsign = [1 1 1 1]; % signs of shocks
% vsign = [1 -1 -1 1]; % (eg: negative shocks for some variables)

flsu = 0; % shock size (1:one unit, 0:one standard error)

dband = 1.96; % width of condidence intervals
% (one standard error times "dbands")

vac = [0 0 0 0]; % accumulated response (1: yes, 0: no)
% vac = [0 1 0 1]; % (eg: accumulated for some variables)

nimp = 60; % # of horizons to draw

flcum = 1; % label for accumulated responses (1:on, 0:off)

%%%% historical decomposition

vhd = [0 1 1 0]; % historical decomposition (1:yes, 0:no)

%%%% output files for figures

flout = 1; % output file (1: yes, 0: no)

%%%% simulation settings

nsim = 10^3; % simulation size for confidence intervals
% (0: no intervals)

irs = 7; % random seed

%% ------------------------------------------------------ %%

%% set variables %%

my = mdata(:, vind); % select data
asvar = asvar(vind);

[ns, nk] = size(my); % # of times, variables
nsl = ns - nl; % # of times to estimate
nb = flc + nk * nl; % # of coefficients

rand('seed', irs); % random seed
randn('seed', irs);

if size(vsign, 2) ~= nk
fprintf('\n%%%% ! The size of "vsign" should equal')
fprintf('\n%%%% the number of variables\n')
end
if size(vac, 2) ~= nk
fprintf('\n%%%% ! The size of "vac" should equal')
fprintf('\n%%%% the number of variables\n')
end
if sum(vhd) > 0 && size(vhd, 2) ~= nk
fprintf('\n%%%% ! The size of "vhd" should equal')
fprintf('\n%%%% the number of variables\n')
end
if size(vsign, 2) > nk
vsign = vsign(1:nk);
end
if size(vac, 2) > nk
vac = vac(1:nk);
end
if sum(vhd) > 0 && size(vhd, 2) > nk
vhd = vhd(1:nk);
end


%% estimate VAR %%

fprintf('\n%%%% [Estimate VAR]')

mx = [ones(ns-nl, flc), zeros(ns-nl, nk*nl)];
for j = 1 : nl
mx(:, (j-1)*nk+flc+1:j*nk+flc) = my(nl-j+1:ns-j,:);
end
mx2i = inv(mx' * mx);

mb = zeros(nb, nk);
me = zeros(nsl, nk);
vl = zeros(nk, 1);

for i = 1 : nk
vy = my(nl+1:end, i);

vb = mx2i * (mx' * vy);
ve = vy - mx * vb;
de2 = ve' * ve / nsl;

vl(i) = -0.5 * nsl * (log(2 * pi * de2) + 1);

mb(:, i) = vb;
me(:, i) = ve;
end

mes = me' * me;
mS = mes / (nsl - nb);
met = (chol(mS, 'lower') \ me')';

vaic = -2 * vl + 2 * nb;
vbic = -2 * vl + 2 * nb * log(nsl);

fprintf('\n%%%%')
fprintf('\n%%%% Lag:%2.0f', nl)
fprintf('\n%%%% Const: ')
if flc == 1, fprintf('on')
else, fprintf('off'), end
fprintf('\n%%%%')
fprintf('\n%%%% AIC: %7.1f', sum(vaic))
fprintf('\n%%%% BIC: %7.1f', sum(vbic))
fprintf('\n%%%%\n')


%% compute impulse response %%

mimp = zeros(nimp+1, nk^2);
mimpm = mimp;
mimps = mimp;

vbh = mb(:);
mW = inv(mes);

mid = reshape((1 : nk*nl), nl, nk)';
vid = mid(:)';

flac = sum(vac) > 0;
vack = kron(ones(1, nk), vac) > 0;

mbi = mb;
mSi = mS;
for ii = 0 : nsim

if ii > 0
mSi = inv(wishrnd(mW, nsl+nk));
mVi = kron(mSi, mx2i);
mVi = (mVi + mVi') / 2;
mbi = reshape(mvnrnd(vbh, mVi), nb, nk);
end
mbj = mbi(1+flc:end, :);
vbi = mbj(:);
mLi = chol(mSi, 'lower');

for j = 1 : nk

vshock = zeros(nk, 1);
vshock(j) = vsign(j);

for t = 1 : nimp+1
if t == 1
myt = zeros(nl, nk);
myt(1, :) = (mLi * vshock)';
else
vyt = myt(:)';
mxt = kron(eye(nk), vyt(vid));
vyt1 = (mxt * vbi)';
if nl > 1
myt = [vyt1; myt(1:end-1, :)];
else
myt = vyt1;
end
end
mimp(t, (j-1)*nk+(1:nk)) = myt(1, :);
end
end

if flac
mimp(:, vack) = cumsum(mimp(:, vack));
end

if ii == 0
mimph = mimp;
else
mimpm = mimpm + mimp;
mimps = mimps + mimp.^2;
end

end

if nsim > 0
mimpm = mimpm / nsim;
mimps = real(sqrt(mimps / nsim - mimpm.^2));

mimpu = mimph + mimps * dband;
mimpl = mimph - mimps * dband;
end

%% plot

if flsu == 1
ves = sqrt(diag(mS));
else
ves = ones(nk, 1);
end
if flout == 1
mout = zeros(nimp+1, nk^2*3);
end
figure
for i = 1 : nk
for j = 1 : nk
kk = (i-1)*nk + j;
subplot(nk, nk, (j-1)*nk+i)
hold on
if nsim > 0
plot(0:nimp, mimph(:, kk) / ves(i), 'b-')
plot(0:nimp, mimpu(:, kk) / ves(i), 'r--')
plot(0:nimp, mimpl(:, kk) / ves(i), 'r--')
else
plot(mimph(:, kk) / ves(i), '-')
end
vax = axis;
axis([0 nimp vax(3:4)])
if vax(3) * vax(4) < 0
line([0, nimp], [0, 0], 'Color', ones(1,3)*0.6)
end
if vac(j) == 1 && flcum == 1
sac = '(cum)';
else
sac = '';
end
title(['Response of ', char(asvar(j)), sac, ...
' to ', char(asvar(i))], 'Fontsize', 9)
hold off

if nsim > 0 && flout == 1
mout(:, (kk-1)*3 + (1:3)) ...
= [mimpl(:, kk) mimph(:, kk) mimpu(:, kk)] / ves(i);
end
end
end

%% output file

if flout == 1
flb = nsim ~= 0;
if ~flb
mout = mimph;
end
if isequal(exist('var_imp.xlsx', 'file'), 2)
delete('var_imp.xlsx');
end

asl = cell(3, nk^2*3+1);
asl{1, 1} = 'Response:';
asl{2, 1} = 'Shock:';
asb = {'low', 'mean', 'high'};
ii = 2;
for i = 1 : nk
for j = 1 : nk
for k = 1 : 1 + flb * 2
if vac(j) == 1 && flcum == 1
sac = ' (cum)';
else
sac = '';
end
if k == 1
asl{1, ii} = [asvar{j}, sac];
asl{2, ii} = asvar{i};
end
asl{3, ii} = asb{k+~flb};
ii = ii + 1;
end
end
end

xlswrite('var_imp.xlsx', asl, 'Sheet1', 'A1');
xlswrite('var_imp.xlsx', [(0:nimp)', mout], 'Sheet1', 'A4');
end


%% compute historical decomposition %%

if sum(vhd) > 0

if flc == 1
vc = mb(1, :)';
end

mbj = mb(1+flc:end, :);
vbi = mbj(:);
mLi = chol(mS, 'lower');

myh = zeros(ns, (nk+flc)*nk);

for i = 1-flc : nk
myt = zeros(nl, nk);
for t = nl+1 : ns
if ~i
vet = vc;
else
vshock = zeros(nk, 1);
vshock(i) = met(t-nl, i);
vet = mLi * vshock;
end

vyt = myt(:)';
mxt = kron(eye(nk), vyt(vid));

vyt1 = (mxt * vbi + vet)';
if nl > 1
myt = [vyt1; myt(1:end-1, :)];
else
myt = vyt1;
end

myh(t, (0:nk-1)*(flc+nk)+i+flc) = vyt1;

end
end

asleg = {'Data'};
if flc == 1
asleg = [asleg, {'const'}];
end
asleg = [asleg, asvar];

for i = 1 : nk
if vhd(i) == 1
figure
plot(my(:, i), '-')
hold on
plot(nl+1:ns, myh(nl+1:end, (1:flc+nk)+(i-1)*(flc+nk)), ...
'--')
hold off
vax = axis;
axis([1 ns vax(3:4)])
if vax(3) * vax(4) < 0
line([1, ns], [0, 0], 'Color', ones(1,3)*0.6)
end
legend(asleg)
title(['Historical decomposition of' asvar(i)], ...
'FontSize', 12)
end
end

if flout == 1
if isequal(exist('var_hd.xlsx', 'file'), 2)
delete('var_hd.xlsx');
end
asl = cell(2, nk*(nk+flc)+1);
asl{1, 1} = 'Explained:';
asl{2, 1} = 'Shock:';
ii = 2;
for i = 1 : nk
for j = 1 : nk+flc
asl{1, ii} = asleg{i+2};
asl{2, ii} = asleg{j+1};
ii = ii + 1;
end
end
xlswrite('var_hd.xlsx', asl, 'Sheet1', 'A1');
xlswrite('var_hd.xlsx', [(1:ns)', myh], 'Sheet1', 'A3');
end

end

运行效果如下: