QLab增加耦合协调度模型
QLab新版本增加了耦合协调度模型,同时对界面做了一定程度的更新,模型被分为经济模型和评价模型两个类别。
耦合模型是从物理学中演变而来,它所体现的是两个系统之间通过彼此的相互作用互相影响,耦合度是对不同系统耦合程度的定量描述。
其中,耦合协调度C的计算公式如下:
协调发展度D的计算公式如下:
软件界面如下:
QLab界面
可以计算二元及以上子系统的协调耦合度,在计算协调发展度D的时候,提供平均权重和自定义权重两种方式供用户选择,操作还是一如既往的简单,只需准备好数据即可。
有需要购买软件,请联系微信canglang12002
往期推荐:
广义SBM模型的matlab代码
QLab1.4正式发布!增加全排列多边形图示指标法
大量数据时的Dagum基尼系数分解工具
Panda-DEA_1.0正式发布!
含有非期望产出的ZSG-DEA模型
两阶段网络DEA模型及其计算
Panda-DEA,一款新的DEA模型软件
DKM_1.3更新—CCM收敛交叉映射
DKM_1.2:两阶段嵌套泰尔指数工具
DKM_1.1–新增熵值法功能
数量经济学工具DKM_1.0
空间马尔科夫链工具
空间静 ...
三行R代码搞定山脊图绘图
有时候我们对比几组数据的分布情形,需要把几组数据的分布叠加在一起,这就用到山脊图了。
今天带来一个最简单的山脊图绘图教程。所需要的数据是这样:
原始数据
非常简单,一列是数据,一列是年份。然后我们导入包ggridges和ggplot2,并读取数据:
123library("ggplot2")library("ggridges")df <- read.csv('G:/test1.csv')
然后使用ggplot和geom_density_ridges这两个函数来绘图:
123df %>% ggplot(aes(x = Score, y = year,group=year)) + geom_density_ridges()
效果如下:
这里的数据,其实是2006年到2019年,这里的刻度是默认的形式,已经很美观,如果想自定义,可以这样做:
1234567dd<-df %>% ggplot(aes(x = Score, y = year,group=year)) + geo ...
VAR模型的matlab代码
var模型的matlab代码,摘自:https://sites.google.com/site/jnakajimaweb/var
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 ...
广义SBM模型的matlab代码
今天推出的依然是DEA模型—广义SBM模型。
该模型在对有效决策单元做进一步排序时参考集是保持不变的,通过移动因子的变化,可以有效
预测有效决策单元的下一步变化。
该模型的规划式如下:
模型1
其中的δ参数为0时为规模报酬不变情况,为1时表示规模报酬可变情况,d为移动因子。
当决策单元(x,y)不属于T(d)时,模型1没有可行解,为了进一步计算决策单元效率值,提出改进模型,其规划式如下:
模型2
这里使用matlab实现了模型2。论文结果与计算结果对比如下:
结果对比
有需要的联系我微信canglang12002
参考文献:
[1]孙娜,那日萨,马占新.基于样本评价的广义SBM的效率度量方法[J].系统工程,2019,37(06):107-118.
[2]孙娜,那日萨,马占新.基于样本评价的广义SBM方法及其有效性[J].系统工程,2019,37(03):132-140.
Panda_DEA增加RAM-DEA和BAM-DEA模型
今天要更新的是DEA模型中的RAM和BAM模型,这两个模型已经加入到新版本的Panda_DEA中,可以很方便地计算其效率值。
RAM-DEA是1998年由Aida和Cooper等提出的一种非径向DEA模型,由于该模型构建对投入产出指标的设计考虑了指标之间的相互影响效应,并对这些效应进行了定性分析,因此得到了广泛的研究与应用。
相比于传统DEA及衍生模型,RAM-DEA模型的长处在于可以涵盖多类投入产出指标,目标函数的设计考虑到指标数量与数据极差对结果的影响,使得测算出的效率值不会因指标数量变化产生偏差。决策单元的投入产出指标数不再影响最优方案选择,也不需要对原始数据进行预处理。
基本的RAM-DEA模型规划式如下:
经济效率为:1-RAMp,效率值在0到1之间。
上式中,Rnx表示决策单元K中第n种投入要素的最大值与最小值之差,Rmy表示决策单元K中第m种期望产出的最大值与最小值之差。
BAM模型
由于RAM模型中的参数是由投入和产出的极差构成,会出现无效率值过小,因此导致不同的决策单元效率极为接近,难以有效区分的情形,因此Cooper et al(2011)在RAM模型的 ...
QLab1.4正式发布!增加全排列多边形图示指标法
鉴于DKM之前的版本都是命令行版本,操作起来并不方便,因此特意加上了GUI界面,并更名为QLab。新版本对于常见的数据错误,如空间邻接矩阵不对称,某些行列全部为0等情况,会给出提示弹窗,方便用户操作。
QLab的界面如下:
用户可以自行选择数据文件,以及对应的保存目录,数据文件不需要使用特定的文件名,运行结果的文件名自动加上时间戳,多次运行,也不用关闭之前的结果文件。
下面是关于全排列多边形图示指标法的介绍:
全排列多边形图示指标法定义为:设共有n 个指标(标准化后的值),以这些指标的上限值为半径构成一个中心n 边形,各指标值的连线构成一个不规则中心n 边形,这个不规则中心n 边形的顶点是n 个指标的首尾相接的全排列,n 个指标总共可以构成(n-1)! /2 个不同的不规则中心n 边形,综合指数定义为所有这些不规则多边形面积的均值与中心多边形面积的比值。
指标值标准化采用双曲线标准化函数:
其中U为指标x的上限,取最大值,L为指标x的下限,取最小值,T为指标x的临界值,取平均值。
标准化及综合指数计算公式如下:
根据标准化后的数据,和综合指数,可以绘制雷达图和折线图,如 ...
大量数据时的Dagum基尼系数分解工具
去年写过的Dagum基尼系数分解工具,本来已经足够使用,但是前天有一位用户,数据量有近15w行,我从未设想过会出现如此大的数据,程序足足运行了将近5个小时才跑出结果,然而用户还有很多类似的数据,不能总是如此。
于是在原先的工具基础上,做了优化,优化后的运行速度得到极大提升,同样的数据,在优化后,只用了不到30分钟就运行出结果,时间缩短到未优化前的1/10。
以下是结果对比:
未优化前
优化之后
需要的可以联系我微信,canglang12002
除了公众号的这些工具,大家有想做的模型,找不到代码,或者做起来比较繁琐,也欢迎与我们联系。
往期推荐:
Panda-DEA_1.0正式发布!
含有非期望产出的ZSG-DEA模型两阶段网络DEA模型及其计算
Panda-DEA,一款新的DEA模型软件
DKM_1.3更新—CCM收敛交叉映射
DKM_1.2:两阶段嵌套泰尔指数工具
DKM_1.1–新增熵值法功能
数量经济学工具DKM_1.0
空间马尔科夫链工具
空间静态kernel核密度、空间动态kernel核密度工具更新
马尔科夫链之传统马尔可夫链
Dagum基尼系数分解工具更新
无 ...
按收入来源分解基尼系数的工具
今天推出一个小工具,按收入来源分解基尼系数。
由于学界对基尼系数的计算没有统一,有很多方法可以计算基尼系数,但是大多比较复杂,在此基础上,1999年诺丁汉大学的姚树洁提出了一种新的计算方法,公式如下:
其中,n表示全省一共n个县城,Pk表示第k个县城的人口在全省人口总数中的份额,Wk为第k个县城收入在全省县级收入总额中的比重,Qk是第一个县累积到第k个县的收入比重之和。在按上述公式计算基尼系数的时候,应该按照各个县城财力大小由小到大排序。
姚树洁提出了按照收入来源分解基尼系数的方法,简单明了,计算方便,最大的优势在于对不均等分组同样适用。公式如下:
假设全省一共n个县,mk,pk分别为第k个县的人均收入和人口比重,把所有县城按照mk的升序排列。如果k个县城的总收入来源于f种收入,则基尼系数可以按照这些来源分解为F个部分。Wf为第f种收入在所有收入额中的占比,gf为第f种来源的人均值,g为全部收入的人均值,Cf表示f收入来源的集中率。Qfk是第f种收入从第1个县城累积到k个县城的合计数在全部收入中的占比,Wfk是第k个县的第f种收入在全部县f来源总和中的份额,mfk是第k个县f来源的 ...
Panda-DEA_1.0正式发布!
经过一段时间的努力工作,Panda-DEA_1.0版本终于正式发布了!
软件的模型选项界面如下:
距离函数
导向
规模报酬
模型
面板模型
此外,一些比较前沿的DEA模型论文的复现和常见的基础模型,Panda-DEA提供了快捷选择模型模块,只需准备好相应的数据,可以一键复现论文的结果,参考理论,复现结果,最大减轻大家写论文的苦恼。
在模型方面,目前包括径向和至前沿最远距离(SBM)两种距离函数,投入,产出、非导向三种导向,凸性前沿和自由处置壳(FDH)两种前沿,规模报酬包括CRS,VRS,NDRS,NIRS,GRS五种类型,模型选项包括超效率和非期望产出两项,如果线性规划出现无可行解,提供赋值为1、赋值为空,和运行FPA(适用径向距离)三阶段法求解三种处理方式。至于Malquist指数,提供相邻参比,全局参比、固定参比、序列参比四种比较常用的参比方式。
至于DEA结果,Panda-DEA提供效率值,投影值和改进比例三项结果,Malquist指数则提供指数和FGLR(1992),FGNZ(1994) ...
含有非期望产出的ZSG-DEA模型
今天介绍一种含有非期望产出的ZSG-DEA模型。
该模型的公式如下:
其中yn、en、un和Xk,n分别表示第n个地区的期望产出(GDP),能源投入、非期望产出(CO2),和非能源投入。N为DMU个数,
分别表示第i个地区的能源投入与CO2排放的效率水平,
分别为能源投入和CO2排放效率值的权重,这里作者设置的权重各为0.5,也可以根据研究主题自行设置。这里的
即是零和DEA效率。
根据零和博弈DEA的思想,当一个地区的用能权和碳排放权增加时,其他地区必须减少相同数量的用能权和碳排放权,以保持总量不变。
作者这里采用了比例法进行重新分配,具体的分配公式如下:
这里的e’m和u’m就是根据效率值进行分配后,m地区分配到的用能权和碳排放权份额。在ZSG中,一次调整一般并不能达到零和DEA有效,这里作者参考林坦和宁俊飞提出的迭代法进行迭代求解,直到各个地区的ZSG效率值均达到1为止。
由于文献作者并未贴出原始数据,这里仅写出了代码,经过测试,可以达到作者所描述的效果。
参考文献:基于历史法和零和DEA方法的用能权与碳排放权初始分配研究,刘海英,王钰
需要测算可以联系我微信:cang ...